DPP4 gene variation affects GLP-1 secretion, insulin secretion, and glucose tolerance in humans with high body adiposity
نویسندگان
چکیده
OBJECTIVE Dipeptidyl-peptidase 4 (DPP-4) cleaves and inactivates the insulinotropic hormones glucagon-like peptide 1 (GLP-1) and gastric inhibitory polypeptide, collectively termed incretins. DPP-4 inhibitors entered clinical practice as approved therapeutics for type-2 diabetes in 2006. However, inter-individual variance in the responsiveness to DPP-4 inhibitors was reported. Thus, we asked whether genetic variation in the DPP4 gene affects incretin levels, insulin secretion, and glucose tolerance in participants of the TÜbingen Family study for type-2 diabetes (TÜF). RESEARCH DESIGN AND METHODS Fourteen common (minor allele frequencies ≥0.05) DPP4 tagging single nucleotide polymorphisms (SNPs) were genotyped in 1,976 non-diabetic TÜF participants characterized by oral glucose tolerance tests and bioimpedance measurements. In a subgroup of 168 subjects, plasma incretin levels were determined. RESULTS We identified a variant, i.e., SNP rs6741949, in intron 2 of the DPP4 gene that, after correction for multiple comparisons and appropriate adjustment, revealed a significant genotype-body fat interaction effect on glucose-stimulated plasma GLP-1 levels (p = 0.0021). Notably, no genotype-BMI interaction effects were detected (p = 0.8). After stratification for body fat content, the SNP negatively affected glucose-stimulated GLP-1 levels (p = 0.0229), insulin secretion (p = 0.0061), and glucose tolerance (p = 0.0208) in subjects with high body fat content only. CONCLUSIONS A common variant, i.e., SNP rs6741949, in the DPP4 gene interacts with body adiposity and negatively affects glucose-stimulated GLP-1 levels, insulin secretion, and glucose tolerance. Whether this SNP underlies the reported inter-individual variance in responsiveness to DPP-4 inhibitors, at least in subjects with high body fat content, remains to be shown.
منابع مشابه
Sitagliptin reduces hyperglycemia and increases satiety hormone secretion more effectively when used with a novel polysaccharide in obese Zucker rats.
The novel polysaccharide (NPS) PolyGlycopleX (PGX) has been shown to reduce glycemia. Pharmacological treatment with sitagliptin, a dipeptidyl peptidase 4 (DPP4) inhibitor, also reduces glycemia by increasing glucagon-like peptide-1 (GLP-1). Our objective was to determine if using NPS in combination with sitagliptin reduces hyperglycemia in Zucker diabetic fatty (ZDF) rats more so than either t...
متن کاملGenetic determinants of circulating GIP and GLP-1 concentrations.
The secretion of insulin and glucagon from the pancreas and the incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP) from the gastrointestinal tract is essential for glucose homeostasis. Several novel treatment strategies for type 2 diabetes (T2D) mimic GLP-1 actions or inhibit incretin degradation (DPP4 inhibitors), but none is thus far aimed at ...
متن کاملChanges in glucose-induced plasma active glucagon-like peptide-1 levels by co-administration of sodium-glucose cotransporter inhibitors with dipeptidyl peptidase-4 inhibitors in rodents.
We investigated whether structurally different sodium-glucose cotransporter (SGLT) 2 inhibitors, when co-administered with dipeptidyl peptidase-4 (DPP4) inhibitors, could enhance glucagon-like peptide-1 (GLP-1) secretion during oral glucose tolerance tests (OGTTs) in rodents. Three different SGLT inhibitors-1-(β-d-Glucopyranosyl)-4-chloro-3-[5-(6-fluoro-2-pyridyl)-2-thienylmethyl]benzene (GTB),...
متن کاملEvolution of Gliptins Over the Last 5 Years
In humans, the two main physiologically important incretin hormones are: (1) GLP-1 and (2) GIP. They not only stimulate insulin secretion, but augment insulin stores by upregulating insulin gene expression, and also all the steps in the biosynthesis of insulin. Another attractive facet of incretins is revealed by animal and in vitro studies, which seem to indicate that both these peptides have ...
متن کاملPlasma gastric inhibitory polypeptide and glucagon‐like peptide‐1 levels after glucose loading are associated with different factors in Japanese subjects
UNLABELLED Aims/Introduction: Gastric inhibitory polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are major incretins that potentiate insulin secretion from pancreatic β-cells. The factors responsible for incretin secretion have been reported in Caucasian subjects, but have not been thoroughly evaluated in Japanese subjects. We evaluated the factors associated with incretin secretion duri...
متن کامل